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This talk is part of my joint work in progress with Michael Skeide
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Background

The objects of study Il

0eSCRk.
T = (Ts)ses a CP-semigroup on a unital C*-algebra 5.

Example

If T1,..., Ty are k commuting CP maps, then we get a CP-semigroup
(Ts)senk over S = Nk

Ts=Tlo -0 T/fk WhereS:(517'~')Sk)€Nk'

Every CP-semigroup over S = N¥ arises this way.



Background

Bhat's dilation theorem?!

Theorem (Bhat, 1996)

Let T = (T¢)t>0 be a CP-semigroup on B(H). Then there exists a Hilbert

space K containing H, and an E-semigroup ¥ = (0+)¢>0 on B(K), such
that

Ti(A) = Pyd:(A)Py , forallt >0 and A € B(H).

'Result also works for N instead of R (see abstract).
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Bhat's dilation theorem

Theorem (Bhat, 1996)

Let T = (T¢)e>0 be a CP-semigroup on B(H). Then there exists a Hilbert

space K containing H, and an E-semigroup ¥ = (0+)¢>0 on B(K), such
that

To(PHAPY) = Pude(APy ,  for all t >0 and A € B(K).
BK) — 5 B(K)
PHOPH J/PH.PH
B(H) — 5 B(H)
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space K containing H, and an E-semigroup ¥ = (9+)¢>0 on B(K), such
that

Ti(A) = Pyd:(A)Py , forallt >0 and A € B(H).

Interpretation

An irreversible quantum dynamical system can be embedded in a reversible
one (¥ can be extended to a group of *-automorphisms).

Application

An index for quantum dynamical semigroups (Bhat).

Remark

Different notions of dilations of CP-semigroups have been studied since 70s:
Davies, Evans-Lewis, Hudson-Parthasarathy, Kummerer, Sauvageout ...
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We study the possible generalizations of Bhat's theorem to CP-semigroups
on a unital C*-algebra, paramaterized by a semigroup S, and beyond.

For the presentation, narrow the scope:
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Neumann algebra B, such that every T is a normal map.

Definition
A dilation of T is a triple (A, ¥, p), where A is a von Neumann algebra,
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projection, such that B = pAp, and such that
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The problem

We study the possible generalizations of Bhat's theorem to CP-semigroups
on a unital C*-algebra, paramaterized by a semigroup S, and beyond.

For the presentation, narrow the scope:

Let T = (Ts)ses be a CP-semigroup over S C ]Ri, acting on a von
Neumann algebra B, such that every T is a normal map.

Definition

A dilation of T is a triple (A, ¥, p), where A is a von Neumann algebra,
¥ = (Js)ses is a semigroup of normal *-endomorphism, and p € A is a
projection, such that B = pAp, and such that

Ts(b) = pvs(b)p forall be B,s €S.

Questions
1. Find necessary & sufficient conditions for existence of dilation.

2. For fixed k, does every CP-semigroup over N¥ have a dilation?



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

Let T : B — B be a CP map. Then there exists a unique
W*_correspondence? £ over B, and a vector £ € £, such that

span BEBS =&

and
(€,b€) = T(b) for all be B.

2A bimodule over B, that has a B-valued inner product. Equivalently, one may use

Skeide's von Neumann modules (and we do).
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The GNS representation of a CP-semigroup

Let T = (Ts)ses be a CP-semigroup on B.
For every s, let (£, &s) be the GNS representation of Ts.
For s, t € S, define

Wst: Esit = Es @& (really EsO°E; )

by
Ws ¢ : alsttb — als © &b,

and then extend linearly. We check:

(a€s © &b, als © &ib) = (€1, (als, als)Eib) = b™ (&, Ts(a"a)ée)b =

= b*T(To(a*a))b = b* Tey(a*a)b = (aks,ch, ats. ¢b).

Ws ¢ is an isometry!
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Subproduct systems*

Definition
A subproduct system is a family £© = (&s)ses of B-correspondences,
together with a family {ws ¢ : o1+ = & © £} of isometric bimodule maps,
which iterate associatively, i.e., the following diagram is commutative
(Vr,s, t):

gr+s+t E— (C/‘r © gs—i—t

| |

5r+s®gt4>5r®gs®gt

A product system is a subproduct system in which ws ; are all unitaries.

Definition
A family {&s € Es}ses is called a unit if ws (st = & © & for all s, t.

*Inclusion systems by Bhat-Mukherjee.
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E® = (&s)ses of B-correspondences (called the GNS subproduct system)
and a unit (&)ses such that

Ts(b) = (&, b¢s)  forall s e S, b e B.

Theorem (Following Bhat-Skeide, 2000)

Let T be a Markov semigroup. If the GNS subproduct system of T can be
embedded in a product system, then T has a unital dilation (A, Y, p).

In fact, one can take A = B?(E), where E is some (full) B-correspondence.
Markov semigroup = unital CP-semigroup.
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then there exist two commuting normal unital *~endomorphisms 11,19> on
a vN algebra A containing BB, a projection p € A such that B = pAp, and

T o T,2(b) = pd7* 0 952(b)p  for all b€ B,ny,ny € N.

Proof.

Given a Markov semigroup over N2, we construct a product system that
contains the GNS subproduct system of that semigroup. Then apply
previous theorem.

]

Remark: In fact we have A = ApA° = B?(E), where E = Ap’. In
particular, A is Morita equivalent to B (in the sense of Rieffel).
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e A Markov semigroup T = (Ts)secs has a dilation (B?(E), v, p) where E
is a (full) B-correspondence, if and only if its GNS subproduct system
embeds into a product system.

Caveats:

1. We did not define what "minimal" means.

2. Over N¥ (k > 2), minimal dilations are not unique.

3. Over Nk (k > 2), a given dilation might not be "minimalizable", that is,
cannot be compressed or restricted to a minimal one (new and weird).
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What about the converse direction?

Theorem (S.-Skeide)

e If a Markov semigroup T = (Ts)ses has a minimal dilation then its GNS
subproduct system embeds into a product system.

e A Markov semigroup T = (Ts)secs has a dilation (B?(E), v, p) where E
is a (full) B-correspondence, if and only if its GNS subproduct system
embeds into a product system.

Caveats:

1. We did not define what "minimal" means.

2. Over N¥ (k > 2), minimal dilations are not unique.
3. Over Nk (k > 2), a given dilation might not be "minimalizable", that is,
cannot be compressed or restricted to a minimal one (new and weird).
4. What about dilations (A, 9, p), where A # B3(E)?
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There exist CP and Markov semigroups over N3 for which there is no
minimal dilation.
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The converse direction Il

Theorem (S.-Skeide)

e If a Markov semigroup T = (Ts)ses has a minimal dilation then its GNS
subproduct system embeds into a product system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over N3 for which there is no
minimal dilation.

"Proof" (not really...)

[S.-Solel] construct a subproduct system over N3 that cannot be embedded
into a product system. We apply the above theorem to that subproduct
system.

Problem: this does not rule out the existence of non-minimal dilations.
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Minimality
Let T = (Ts)ses be a CP-semigroup over S, and (A, 4, p) a dilation.
Suppose that B C B(H) and that A C B(K), so that p = Py.
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Let T = (Ts)ses be a CP-semigroup over S, and (A, 4, p) a dilation.
Suppose that B C B(H) and that A C B(K), so that p = Py.

There are three properties that one may require for "minimality":
1. "Algebraic minimality", that is

A = W*(UsesVs(B)).

2. "Spatial minimality", that is, A = ApA°. Assuming 1, same as:

K = span{ds,(b1)---¥s,(bn)h : s; € S, bj € B,h € H}.

3. "Incompressibility": there is no nontrivial projection p < g € A s.t.

q9s(-)q : qAq — qAq , qVs(-)q: qaq — qU¥s(qaq)q,

is an E-semigroup, and a dilation of T.
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Minimality Il
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3. No nontrivial projection p < g # 1 in A s.t. qUs(+)q is a dilation.
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The notion of minimality referred to in theorem and corollary above is the
strongest one: 1+2. (This also implies 3).
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Minimality |1

1. A= W*(Usests(B)).
2. A= ApA’.
3. No nontrivial projection p < g # 1 in A s.t. qUs(+)q is a dilation.

The notion of minimality referred to in theorem and corollary above is the
strongest one: 1+2. (This also implies 3).

It is easy to restrict to a semigroup satisfying 1, and not hard to compress
to obtain 143, but that is not the notion that works best (M.E.).

Over Ry (and N), 142 is equivalent to 1+3. (non-trivial!)

We have an example of a dilation (4,1, p) over N2, which satisfies 2, but
not 1. After restricting to W*(Uses?s(B)), and then compressing to the
minimal compressing g, one obtains an algebraically minimal and
incompressible dilation (143), which does not satisfy 2.
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Let T = (Ts)ses be a CP-semigroup on B, and (A, 9, p) a dilation.
Following a construction from [Skeide02], we see what structure arises.
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Let T = (Ts)ses be a CP-semigroup on B, and (A, 9, p) a dilation.
Following a construction from [Skeide02], we see what structure arises.
Define a family (Es)ses of B-correspondences as follows:
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b-xs:=vs(b)xs , xs-b:=xb, xs€ Es,beB.

(Xs,¥s) == xgys € pAp = B.
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Dilations and superproduct systems

Dilation = what?

Let T = (Ts)ses be a CP-semigroup on B, and (A, 9, p) a dilation.
Following a construction from [Skeide02], we see what structure arises.
Define a family (Es)ses of B-correspondences as follows:

E:=Ap , E;:=19p)E.
W*_correspondence structure:
b-xs:=vs(b)xs , xs-b:=xb, xs€ Es,beB.

(Xs,¥s) = x;ys € pAp = B.
Unit:
ns :=Us(p)p € Es.
(Es,ms) represents T

(ns, b-115) = ps(p)Is(b)Vs(p)p = pUs(b)p = Ts(b).
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Dilations and superproduct systems

Dilation = what? I

Let T = (Ts)ses be a CP-semigroup on B, and (A, 4, p) a dilation.
We constructed a family (Es)ses of B-corresopndences, and a family
(ns)ses of unit vectors (ns € Es) that represent T

<7757 b- 775) = pﬂs(b)p = Ts(b)'



Dilation = what? 1l

Let T = (Ts)ses be a CP-semigroup on B, and (A, 4, p) a dilation.
We constructed a family (Es)ses of B-corresopndences, and a family
(ns)ses of unit vectors (ns € Es) that represent T:

<7757 b- 775) = pﬂs(b)p = Ts(b)

Hence (Es, ns) "contains" the GNS representation (&, &s) of Ts.
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Let T = (Ts)ses be a CP-semigroup on B, and (A, 4, p) a dilation.
We constructed a family (Es)ses of B-corresopndences, and a family
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Dilation = what? Il

Let T = (Ts)ses be a CP-semigroup on B, and (A, 4, p) a dilation.
We constructed a family (Es)ses of B-corresopndences, and a family
(ns)ses of unit vectors (ns € Es) that represent T:

<7757 b- 775) = pﬂs(b)p = Ts(b)

Hence (Es, ns) "contains" the GNS representation (&, &s) of Ts.

Q: is (Es)ses @ PRODUCT system?
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Dilation = what? IlI

Let T = (Ts)ses be a CP-semigroup on B, and (A, 4, p) a dilation. Let

((Es)ses, (115)ses) be as above, (s, b - 1)s)

Ts(b).

N
N

N



Dilations and superproduct systems

Dilation = what? Il

Let T = (Ts)ses be a CP-semigroup on B, and (A, 4, p) a dilation. Let
((Es)sess (115)ses) be as above, (15, b-ns) = Ts(b).

Define
Vst i Es © Ex = Espy (really ESO°E; )

Vst Xs @ Y — Ue(Xs)ye -
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Dilation = what? Il

Let T = (Ts)ses be a CP-semigroup on B, and (A, 4, p) a dilation. Let

((Es)ses, (ns)ses) be as above, (ns, b-ns) = Ts(b).
Define

Vsit : Es © Bt — Esy¢ ( really EO°E, )
Vst Xs @ Y — Ue(Xs)ye -

A direct calculation shows:

(xXs © }’t,Xé © y{} =...= <19t(XS)Ytﬂ9t(Xé))’£>-

Hence vs: : Es © E; — Esy¢ is an isometry:



Dilation = what? IlI

Let T = (Ts)ses be a CP-semigroup on B, and (A, 4, p) a dilation. Let

((Es)ses, (ns)ses) be as above, (ns, b-ns) = Ts(b).
Define

Vsit : Es © Bt — Esy¢ ( really EO°E, )
Vst Xs @ Y — Ue(Xs)ye -

A direct calculation shows:
(Xs O ye, X O yp) = - = (Ve(X6)ye, Ve (x0)ye)-
Hence vs: : Es © E; — Esy¢ is an isometry:
Es © Er C Egye.

(Es)ses is a superproduct system (but not always a product system).



Dilations and superproduct systems

Superproduct systems

Definition

A superproduct system is a family E€ = (E;)ses of B-correspondences,
together with a family {vs; : Es ® E; — Esy+} of isometric bimodule maps,
which iterate associatively

N
w
N
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Superproduct systems

Definition
A superproduct system is a family E€ = (E;)ses of B-correspondences,
together with a family {vs; : Es ® E; — Esy+} of isometric bimodule maps,
which iterate associatively, i.e., the following diagram is commutative
(Vr,s, t):
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J J
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Dilations and superproduct systems

Superproduct systems

Definition
A superproduct system is a family E€ = (E;)ses of B-correspondences,
together with a family {vs; : Es ® E; — Esy+} of isometric bimodule maps,
which iterate associatively, i.e., the following diagram is commutative
(Vr,s, t):

Er@EsG)Et;)Er@Eert

J J

Er+s © Et — Er+s+t

A product system is a superproduct system in which vs ; are all unitaries.



Dilations and superproduct systems

Recap

Subproduct system:
Product system:
Unit:

55 ®© 51’ 2 gs-i—t
Es O] Et = Es+t
fs O] ft = gs—i—t

N
s

~
N
~



Dilations and superproduct systems

Recap

Subproduct system: £ © & D Esit
Product system: EsOE = Esyy
Unit:

fs © ft = §s+t
Superproduct system: E;® E; C Eg1;

N
s
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Dilations and superproduct systems

Recap

Subproduct system: £ © & D Esit
Product system: EsOE = Esyy
Unit: §s © & = &stt

Superproduct system: E;® E; C Eg1;
For every CP-semigroup T on B3, there exists a subproduct system

EC = (&s)ses of B-correspondences (the GNS subproduct system) and a
unit (&s)ses such that

TS(b) = <€57 b§s> for all s € S, beB.
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Dilations and superproduct systems

Recap

Subproduct system: £ © & D Esit
Product system: EsOE = Esyy
Unit: §s © & = &stt

Superproduct system: E;® E; C Eg1;

For every CP-semigroup T on B3, there exists a subproduct system

E® = (&s)ses of B-correspondences (the GNS subproduct system) and a
unit (&s)ses such that

TS(b) = <€57 b§s> for all s € S, beB.

If T unital, and if the GNS subproduct system can be embedded into a
product system, then T has a dilation (A, 9, p) (with A = B?(E)).

If T has a dilation (A, 4, p), then the GNS subproduct system must
embed into a superproduct system.
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Dilations and superproduct systems

Dilations and superproduct systems
Theorem (S.-Skeide)

Let T = (Ts)ses be a Markov semigroup on a von Neumann algebra .

o A sufficient condition for T to a have a dilation, is that the GNS
subproduct system of T embeds into a product system.

e A necessary condition for T to have a dilation, is that the GNS
subproduct system of T embeds into a superproduct system.
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Dilations and superproduct systems

Dilations and superproduct systems
Theorem (S.-Skeide)

Let T = (Ts)ses be a Markov semigroup on a von Neumann algebra .

o A sufficient condition for T to a have a dilation, is that the GNS
subproduct system of T embeds into a product system.

e A necessary condition for T to have a dilation, is that the GNS
subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over N3 that have no dilation.

"Proof" (not really...)

We have an example of a subproduct system over N3 that cannot be
embedded into a superproduct system.

The truth: the SPS is not the GNS subproduct system of a
CP-semigroup, so the proof does not really go like that ...



More subproduct systems

Another way subproduct systems arise

Let E be a full W*-correspondence over 53, and B?(E) the adjointable
operators on E. E is a Morita W* equivalence from B?(E) to B:

B=ECE , BE)=E®°E*.
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Another way subproduct systems arise

Let E be a full W*-correspondence over 53, and B?(E) the adjointable

operators on E. E is a Morita W* equivalence from B?(E) to B:
B=EGC°E , BE)=EG’E"

For T = (Ts)ses a CP-s.g. on B3(E), and £° = (&s)ses the GNS SPS
consider the Morita equivalent subproduct system F© = (Fs)scs given by
Fs = E*O°EO°E.

F© the subproduct system of B-correspondences associated with T.
Theorem (S.-Skeide, see also S.-Solel)

Every subproduct system over B is the subproduct system of
B-correspondences associated with some normal CP-semigroup T acting on
some B?(E), where E is a B-correspondence.

In particular, every SPS is Morita equivalent to the GNS of some
CP-semigroup.

Morita equivalence behaves nicely w.r.t. inclusions into product systems.
26 /27



Thank you slide

Thank you!



	Background
	The problem
	Subproduct systems and dilations
	Minimality
	Dilations and superproduct systems
	More subproduct systems
	Thank you slide

