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This talk is part of my joint work in progress with Michael Skeide
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Background

The objects of study

S a semigroup of Rk
+, such that 0 ∈ S.

T = (Ts)s∈S a family of maps on a unital C*-algebra B.

• T is said to be a CP-semigroup (over S) if
1. Ts is a (contractive) CP map for all s,
2. T0 = idB,
3. Ts+t = Ts ◦ Tt , for all s, t ∈ S.
• If Ts is a ∗-endomorphism for all s, then T is said to be an E-semigroup.
• Case of greatest interest: S = R+, then CP-semigroups T = (Tt)t≥0
(and E-semigroups) have quantum dynamical interpretations.

(UCP) t 7→ Tt(a) evolution in an irreversible quantum system

(∗auto) t 7→ αt(a) evolution in a reversible quantum system
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Background

The objects of study II

0 ∈ S ⊆ Rk
+.

T = (Ts)s∈S a CP-semigroup on a unital C*-algebra B.

Example
If T1, . . . ,Tk are k commuting CP maps, then we get a CP-semigroup
(Ts)s∈Nk over S = Nk :

Ts = T s1
1 ◦ · · · ◦ T

sk
k where s = (s1, . . . , sk) ∈ Nk .

Every CP-semigroup over S = Nk arises this way.
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Background

Bhat’s dilation theorem1

Theorem (Bhat, 1996)

Let T = (Tt)t≥0 be a CP-semigroup on B(H). Then there exists a Hilbert
space K containing H, and an E-semigroup ϑ = (ϑt)t≥0 on B(K ), such
that

Tt(A) = PHϑt(A)PH , for all t ≥ 0 and A ∈ B(H).

B(K )
ϑt // B(K )

PH•PH
��

B(H)

i

OO

Tt // B(H)

1Result also works for N instead of R+ (see abstract).
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Background

Bhat’s dilation theorem
Theorem (Bhat, 1996)

Let T = (Tt)t≥0 be a CP-semigroup on B(H). Then there exists a Hilbert
space K containing H, and an E-semigroup ϑ = (ϑt)t≥0 on B(K ), such
that

Tt(A) = PHϑt(A)PH , for all t ≥ 0 and A ∈ B(H).

Interpretation
An irreversible quantum dynamical system can be embedded in a reversible
one (ϑ can be extended to a group of *-automorphisms).

Application

An index for quantum dynamical semigroups (Bhat).

Remark
Different notions of dilations of CP-semigroups have been studied since 70s:
Davies, Evans-Lewis, Hudson-Parthasarathy, Kummerer, Sauvageout ...
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The problem

We study the possible generalizations of Bhat’s theorem to CP-semigroups
on a unital C*-algebra, paramaterized by a semigroup S, and beyond.

For the presentation, narrow the scope:
Let T = (Ts)s∈S be a CP-semigroup over S ⊆ Rk

+, acting on a von
Neumann algebra B, such that every Ts is a normal map.

Definition
A dilation of T is a triple (A, ϑ, p), where A is a von Neumann algebra,
ϑ = (ϑs)s∈S is a semigroup of normal *-endomorphism, and p ∈ A is a
projection, such that B = pAp, and such that

Ts(b) = pϑs(b)p for all b ∈ B, s ∈ S.

A ϑs // A
p•p
��

B

i

OO

Ts // B
Arveson, Bhat, Bhat-Skeide, Markiewicz, Muhly-Solel, Powers, SeLegue,
S., S.-Solel, Solel, Vernik,. . .
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The problem

We study the possible generalizations of Bhat’s theorem to CP-semigroups
on a unital C*-algebra, paramaterized by a semigroup S, and beyond.
For the presentation, narrow the scope:
Let T = (Ts)s∈S be a CP-semigroup over S ⊆ Rk

+, acting on a von
Neumann algebra B, such that every Ts is a normal map.

Definition
A dilation of T is a triple (A, ϑ, p), where A is a von Neumann algebra,
ϑ = (ϑs)s∈S is a semigroup of normal *-endomorphism, and p ∈ A is a
projection, such that B = pAp, and such that

Ts(b) = pϑs(b)p for all b ∈ B, s ∈ S.

Questions
1. Find necessary & sufficient conditions for existence of dilation.

2. For fixed k, does every CP-semigroup over Nk have a dilation?

.
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Subproduct systems and dilations

The GNS representation (E , ξ) of a CP map
Let T : B → B be a CP map. Then there exists a unique
W*-correspondence2 E over B, and a vector ξ ∈ E , such that

spanBξBs
= E

and
〈ξ, bξ〉 = T (b) for all b ∈ B.

Construction: on E0 = B ⊗ B put inner product

〈a⊗ b, c ⊗ d〉 = b∗T (a∗c)d

and bimodule operation
a(x ⊗ y)d = ax ⊗ yd .

Complete the quotient, and put ξ = 1⊗ 1. This works:

〈ξ, bξ〉 = 〈1⊗ 1, b ⊗ 1〉 = 1∗T (1∗b)1 = T (b).

2A bimodule over B, that has a B-valued inner product. Equivalently, one may use
Skeide’s von Neumann modules (and we do).
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Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let T = (Ts)s∈S be a CP-semigroup on B.
For every s, let (Es , ξs) be the GNS representation of Ts .

For s, t ∈ S, define

ws,t : Es+t → Es � Et ( really Es�sEt )

by
ws,t : aξs+tb 7→ aξs � ξtb,

and then extend linearly. We check:

〈aξs � ξtb, aξs � ξtb〉 = 〈ξtb, 〈aξs , aξs〉ξtb〉 = b∗〈ξt ,Ts(a∗a)ξt〉b =

= b∗Tt(Ts(a∗a))b = b∗Tt+s(a∗a)b = 〈aξs+tb, aξs+tb〉.

ws,t is an isometry!
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Subproduct systems and dilations

Subproduct systems4

Definition

A subproduct system is a family E5 = (Es)s∈S of B-correspondences,
together with a family {ws,t : Es+t → Es �Et} of isometric bimodule maps,
which iterate associatively

, i.e., the following diagram is commutative
(∀r , s, t):

Er+s+t //

��

Er � Es+t

��

Er+s � Et // Er � Es � Et

A product system is a subproduct system in which ws,t are all unitaries.

Definition
A family {ξs ∈ Es}s∈S is called a unit if ws,tξs+t = ξs � ξt for all s, t.

4Inclusion systems by Bhat-Mukherjee.
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Subproduct systems and dilations

Recap
Subproduct system: Es � Et ⊇ Es+t (or Es�sEt , etc.)

Product system: Es � Et = Es+t
Unit: ξs � ξt = ξs+t
For every CP-semigroup on B, there exists a subproduct system
E5 = (Es)s∈S of B-correspondences (called the GNS subproduct system)
and a unit (ξs)s∈S such that

Ts(b) = 〈ξs , bξs〉 for all s ∈ S, b ∈ B.

Theorem (Following Bhat-Skeide, 2000)

Let T be a Markov semigroup. If the GNS subproduct system of T can be
embedded in a product system, then T has a unital dilation (A, ϑ, p).
In fact, one can take A = Ba(E ), where E is some (full) B-correspondence.

Markov semigroup = unital CP-semigroup.

14 / 27



Subproduct systems and dilations

Recap
Subproduct system: Es � Et ⊇ Es+t (or Es�sEt , etc.)
Product system: Es � Et = Es+t

Unit: ξs � ξt = ξs+t
For every CP-semigroup on B, there exists a subproduct system
E5 = (Es)s∈S of B-correspondences (called the GNS subproduct system)
and a unit (ξs)s∈S such that

Ts(b) = 〈ξs , bξs〉 for all s ∈ S, b ∈ B.

Theorem (Following Bhat-Skeide, 2000)

Let T be a Markov semigroup. If the GNS subproduct system of T can be
embedded in a product system, then T has a unital dilation (A, ϑ, p).
In fact, one can take A = Ba(E ), where E is some (full) B-correspondence.

Markov semigroup = unital CP-semigroup.

14 / 27



Subproduct systems and dilations

Recap
Subproduct system: Es � Et ⊇ Es+t (or Es�sEt , etc.)
Product system: Es � Et = Es+t
Unit: ξs � ξt = ξs+t

For every CP-semigroup on B, there exists a subproduct system
E5 = (Es)s∈S of B-correspondences (called the GNS subproduct system)
and a unit (ξs)s∈S such that

Ts(b) = 〈ξs , bξs〉 for all s ∈ S, b ∈ B.

Theorem (Following Bhat-Skeide, 2000)

Let T be a Markov semigroup. If the GNS subproduct system of T can be
embedded in a product system, then T has a unital dilation (A, ϑ, p).
In fact, one can take A = Ba(E ), where E is some (full) B-correspondence.

Markov semigroup = unital CP-semigroup.

14 / 27



Subproduct systems and dilations

Recap
Subproduct system: Es � Et ⊇ Es+t (or Es�sEt , etc.)
Product system: Es � Et = Es+t
Unit: ξs � ξt = ξs+t
For every CP-semigroup on B, there exists a subproduct system
E5 = (Es)s∈S of B-correspondences (called the GNS subproduct system)
and a unit (ξs)s∈S such that

Ts(b) = 〈ξs , bξs〉 for all s ∈ S, b ∈ B.

Theorem (Following Bhat-Skeide, 2000)

Let T be a Markov semigroup. If the GNS subproduct system of T can be
embedded in a product system, then T has a unital dilation (A, ϑ, p).
In fact, one can take A = Ba(E ), where E is some (full) B-correspondence.

Markov semigroup = unital CP-semigroup.

14 / 27



Subproduct systems and dilations

Recap
Subproduct system: Es � Et ⊇ Es+t (or Es�sEt , etc.)
Product system: Es � Et = Es+t
Unit: ξs � ξt = ξs+t
For every CP-semigroup on B, there exists a subproduct system
E5 = (Es)s∈S of B-correspondences (called the GNS subproduct system)
and a unit (ξs)s∈S such that

Ts(b) = 〈ξs , bξs〉 for all s ∈ S, b ∈ B.

Theorem (Following Bhat-Skeide, 2000)

Let T be a Markov semigroup. If the GNS subproduct system of T can be
embedded in a product system, then T has a unital dilation (A, ϑ, p).

In fact, one can take A = Ba(E ), where E is some (full) B-correspondence.

Markov semigroup = unital CP-semigroup.

14 / 27



Subproduct systems and dilations

Recap
Subproduct system: Es � Et ⊇ Es+t (or Es�sEt , etc.)
Product system: Es � Et = Es+t
Unit: ξs � ξt = ξs+t
For every CP-semigroup on B, there exists a subproduct system
E5 = (Es)s∈S of B-correspondences (called the GNS subproduct system)
and a unit (ξs)s∈S such that

Ts(b) = 〈ξs , bξs〉 for all s ∈ S, b ∈ B.

Theorem (Following Bhat-Skeide, 2000)

Let T be a Markov semigroup. If the GNS subproduct system of T can be
embedded in a product system, then T has a unital dilation (A, ϑ, p).
In fact, one can take A = Ba(E ), where E is some (full) B-correspondence.

Markov semigroup = unital CP-semigroup.

14 / 27



Subproduct systems and dilations

An application

Theorem (S.-Skeide, see also Bhat 98, Solel 2006)

Every Markov semigroup over N2 has a unital dilation:

If T1, T2 are two commuting normal unital CP maps on a vN algebra B,
then there exist two commuting normal unital *-endomorphisms ϑ1, ϑ2 on
a vN algebra A containing B, a projection p ∈ A such that B = pAp, and

T n1
1 ◦ T

n2
2 (b) = pϑn1

1 ◦ ϑ
n2
2 (b)p for all b ∈ B, n1, n2 ∈ N.

Proof.

Given a Markov semigroup over N2, we construct a product system that
contains the GNS subproduct system of that semigroup. Then apply
previous theorem.

Remark: In fact we have A = ApAs
= Ba(E ), where E = Aps . In

particular, A is Morita equivalent to B (in the sense of Rieffel).
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Subproduct systems and dilations

The converse direction
A sufficient condition for the existence of a dilation for a unital
CP-semigroup T is that its GNS subproduct system embeds into a product
system.

What about the converse direction?

Theorem (S.-Skeide)

• If a Markov semigroup T = (Ts)s∈S has a minimal dilation then its GNS
subproduct system embeds into a product system.
• A Markov semigroup T = (Ts)s∈S has a dilation (Ba(E ), ϑ, p) where E
is a (full) B-correspondence, if and only if its GNS subproduct system
embeds into a product system.

Caveats:
1. We did not define what "minimal" means.
2. Over Nk (k ≥ 2), minimal dilations are not unique.
3. Over Nk (k ≥ 2), a given dilation might not be "minimalizable", that is,
cannot be compressed or restricted to a minimal one (new and weird).
4. What about dilations (A, ϑ, p), where A 6= Ba(E )?
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Subproduct systems and dilations

The converse direction II

Theorem (S.-Skeide)

• If a Markov semigroup T = (Ts)s∈S has a minimal dilation then its GNS
subproduct system embeds into a product system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over N3 for which there is no
minimal dilation.

"Proof" (not really...)

[S.-Solel] construct a subproduct system over N3 that cannot be embedded
into a product system. We apply the above theorem to that subproduct
system.

Problem: this does not rule out the existence of non-minimal dilations.
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Minimality

Minimality
Let T = (Ts)s∈S be a CP-semigroup over S, and (A, ϑ, p) a dilation.
Suppose that B ⊆ B(H) and that A ⊆ B(K ), so that p = PH .

There are three properties that one may require for "minimality":
1. "Algebraic minimality", that is

A = W ∗(∪s∈Sϑs(B)).

2. "Spatial minimality", that is, A = ApAs . Assuming 1, same as:

K = span{ϑs1(b1) · · ·ϑsn(bn)h : si ∈ S, bi ∈ B, h ∈ H}.

3. "Incompressibility": there is no nontrivial projection p ≤ q ∈ A s.t.

qϑs(·)q : qAq → qAq , qϑs(·)q : qaq 7→ qϑs(qaq)q,

is an E-semigroup, and a dilation of T .
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Minimality

Minimality II

1. A = W ∗(∪s∈Sϑs(B)).
2. A = ApAs .
3. No nontrivial projection p ≤ q 6= 1 in A s.t. qϑs(·)q is a dilation.

The notion of minimality referred to in theorem and corollary above is the
strongest one: 1+2. (This also implies 3).

It is easy to restrict to a semigroup satisfying 1, and not hard to compress
to obtain 1+3, but that is not the notion that works best (M.E.).

Over R+ (and N), 1+2 is equivalent to 1+3. (non-trivial!)

We have an example of a dilation (A, ϑ, p) over N2, which satisfies 2, but
not 1. After restricting to W ∗(∪s∈Sϑs(B)), and then compressing to the
minimal compressing q, one obtains an algebraically minimal and
incompressible dilation (1+3), which does not satisfy 2.
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Dilations and superproduct systems

Dilation ⇒ what?
Let T = (Ts)s∈S be a CP-semigroup on B, and (A, ϑ, p) a dilation.
Following a construction from [Skeide02], we see what structure arises.

Define a family (Es)s∈S of B-correspondences as follows:

E := Ap , Es := ϑs(p)E .

W*-correspondence structure:

b · xs := ϑs(b)xs , xs · b := xb, xs ∈ Es , b ∈ B.

〈xs , ys〉 := x∗s ys ∈ pAp = B.

Unit:
ηs := ϑs(p)p ∈ Es .

(Es , ηs) represents T

〈ηs , b · ηs〉 = pϑs(p)ϑs(b)ϑs(p)p = pϑs(b)p = Ts(b).
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Dilations and superproduct systems

Dilation ⇒ what? II

Let T = (Ts)s∈S be a CP-semigroup on B, and (A, ϑ, p) a dilation.
We constructed a family (Es)s∈S of B-corresopndences, and a family
(ηs)s∈S of unit vectors (ηs ∈ Es) that represent T :

〈ηs , b · ηs〉 = pϑs(b)p = Ts(b).

Hence (Es , ηs) "contains" the GNS representation (Es , ξs) of Ts .

Q: is (Es)s∈S a PRODUCT system?
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Dilations and superproduct systems

Dilation ⇒ what? III

Let T = (Ts)s∈S be a CP-semigroup on B, and (A, ϑ, p) a dilation. Let
((Es)s∈S, (ηs)s∈S) be as above, 〈ηs , b · ηs〉 = Ts(b).

Define
vs,t : Es � Et → Es+t ( really Es�sEt )

vs,t : xs � yt 7→ ϑt(xs)yt .

A direct calculation shows:

〈xs � yt , x ′s � y ′t〉 = . . . = 〈ϑt(xs)yt , ϑt(x ′s)y
′
t〉.

Hence vs,t : Es � Et → Es+t is an isometry:

Es � Et ⊆ Es+t .

(Es)s∈S is a superproduct system (but not always a product system).
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Dilations and superproduct systems

Superproduct systems

Definition

A superproduct system is a family E4 = (Es)s∈S of B-correspondences,
together with a family {vs,t : Es � Et → Es+t} of isometric bimodule maps,
which iterate associatively

, i.e., the following diagram is commutative
(∀r , s, t):

Er � Es � Et //

��

Er � Es+t

��

Er+s � Et // Er+s+t

A product system is a superproduct system in which vs,t are all unitaries.
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Dilations and superproduct systems

Recap

Subproduct system: Es � Et ⊇ Es+t
Product system: Es � Et = Es+t
Unit: ξs � ξt = ξs+t

Superproduct system: Es � Et ⊆ Es+t
For every CP-semigroup T on B, there exists a subproduct system
E5 = (Es)s∈S of B-correspondences (the GNS subproduct system) and a
unit (ξs)s∈S such that

Ts(b) = 〈ξs , bξs〉 for all s ∈ S, b ∈ B.

If T unital, and if the GNS subproduct system can be embedded into a
product system, then T has a dilation (A, ϑ, p) (with A = Ba(E )).

If T has a dilation (A, ϑ, p), then the GNS subproduct system must
embed into a superproduct system.
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Dilations and superproduct systems

Dilations and superproduct systems
Theorem (S.-Skeide)

Let T = (Ts)s∈S be a Markov semigroup on a von Neumann algebra B.
• A sufficient condition for T to a have a dilation, is that the GNS

subproduct system of T embeds into a product system.
• A necessary condition for T to have a dilation, is that the GNS

subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over N3 that have no dilation.

"Proof" (not really...)

We have an example of a subproduct system over N3 that cannot be
embedded into a superproduct system.

The truth: the SPS is not the GNS subproduct system of a
CP-semigroup, so the proof does not really go like that . . .
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More subproduct systems

Another way subproduct systems arise
Let E be a full W*-correspondence over B, and Ba(E ) the adjointable
operators on E . E is a Morita W* equivalence from Ba(E ) to B:

B = E ∗�sE , Ba(E ) = E�sE ∗.

For T = (Ts)s∈S a CP-s.g. on Ba(E ), and E5 = (Es)s∈S the GNS SPS
consider the Morita equivalent subproduct system F5 = (Fs)s∈S given by

Fs := E ∗�sEs�sE .

F5 the subproduct system of B-correspondences associated with T .

Theorem (S.-Skeide, see also S.-Solel)

Every subproduct system over B is the subproduct system of
B-correspondences associated with some normal CP-semigroup T acting on
some Ba(E ), where E is a B-correspondence.
In particular, every SPS is Morita equivalent to the GNS of some
CP-semigroup.

Morita equivalence behaves nicely w.r.t. inclusions into product systems.
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Thank you slide

Thank you!
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