Subproduct systems and superproduct systems (or: behind the scenes of the dilation theory of CP-semigroups)

Orr Shalit

Technion

ISI Bangalore, December 2016

This talk is part of my joint work in progress with Michael Skeide

 \mathbb{S} a semigroup of \mathbb{R}^{k}_{+} , such that $0 \in \mathbb{S}$. $\mathcal{T} = (T_{s})_{s \in \mathbb{S}}$ a family of maps on a unital C*-algebra \mathcal{B} .

 \mathbb{S} a semigroup of \mathbb{R}^k_+ , such that $0 \in \mathbb{S}$.

- $T = (T_s)_{s \in \mathbb{S}}$ a family of maps on a unital C*-algebra \mathcal{B} .
- T is said to be a **CP-semigroup** (over \mathbb{S}) if
 - 1. T_s is a (contractive) CP map for all s,
 - 2. $T_0 = id_{\mathcal{B}}$,
 - 3. $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$.

 \mathbb{S} a semigroup of \mathbb{R}^k_+ , such that $0 \in \mathbb{S}$.

 $T = (T_s)_{s \in \mathbb{S}}$ a family of maps on a unital C*-algebra \mathcal{B} .

- T is said to be a **CP-semigroup** (over \mathbb{S}) if
 - 1. T_s is a (contractive) CP map for all s,
 - 2. $T_0 = id_{\mathcal{B}}$,
 - 3. $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$.
- If T_s is a *-endomorphism for all s, then T is said to be an **E-semigroup**.

 \mathbb{S} a semigroup of \mathbb{R}^k_+ , such that $0 \in \mathbb{S}$.

 $T = (T_s)_{s \in \mathbb{S}}$ a family of maps on a unital C*-algebra \mathcal{B} .

- T is said to be a **CP-semigroup** (over \mathbb{S}) if
 - 1. T_s is a (contractive) CP map for all s,
 - 2. $T_0 = id_{\mathcal{B}}$,
 - 3. $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$.
- If T_s is a *-endomorphism for all s, then T is said to be an **E-semigroup**.
- Case of greatest interest: $\mathbb{S} = \mathbb{R}_+$, then CP-semigroups $T = (T_t)_{t \ge 0}$ (and E-semigroups) have quantum dynamical interpretations.

 \mathbb{S} a semigroup of \mathbb{R}^k_+ , such that $0 \in \mathbb{S}$.

 $T = (T_s)_{s \in \mathbb{S}}$ a family of maps on a unital C*-algebra \mathcal{B} .

- T is said to be a **CP-semigroup** (over \mathbb{S}) if
 - 1. T_s is a (contractive) CP map for all s,
 - 2. $T_0 = id_{\mathcal{B}}$,
 - 3. $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$.
- If *T_s* is a *-endomorphism for all *s*, then *T* is said to be an E-semigroup.
 Case of greatest interest: S = R₊, then CP-semigroups *T* = (*T_t*)_{t≥0} (and E-semigroups) have quantum dynamical interpretations.

 $0 \in \mathbb{S} \subseteq \mathbb{R}_{+}^{k}$. $T = (T_{s})_{s \in \mathbb{S}}$ a CP-semigroup on a unital C*-algebra \mathcal{B} .

$$0\in \mathbb{S}\subseteq \mathbb{R}^k_+.$$

 $\mathcal{T}=(\mathcal{T}_s)_{s\in \mathbb{S}}$ a CP-semigroup on a unital C*-algebra $\mathcal{B}.$

Example

If T_1, \ldots, T_k are k commuting CP maps, then we get a CP-semigroup $(T_s)_{s \in \mathbb{N}^k}$ over $\mathbb{S} = \mathbb{N}^k$:

$$T_s = T_1^{s_1} \circ \cdots \circ T_k^{s_k}$$
 where $s = (s_1, \ldots, s_k) \in \mathbb{N}^k$.

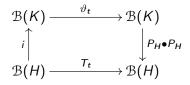
Every CP-semigroup over $\mathbb{S} = \mathbb{N}^k$ arises this way.

Bhat's dilation theorem¹

Theorem (Bhat, 1996)

Let $T = (T_t)_{t\geq 0}$ be a CP-semigroup on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and an E-semigroup $\vartheta = (\vartheta_t)_{t\geq 0}$ on $\mathcal{B}(K)$, such that

 $T_t(A) = P_H \vartheta_t(A) P_H$, for all $t \ge 0$ and $A \in \mathfrak{B}(H)$.



¹Result also works for \mathbb{N} instead of \mathbb{R}_+ (see abstract).

Theorem (Bhat, 1996)

Let $T = (T_t)_{t\geq 0}$ be a CP-semigroup on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and an E-semigroup $\vartheta = (\vartheta_t)_{t\geq 0}$ on $\mathcal{B}(K)$, such that

$$T_t(P_HAP_H) = P_H\vartheta_t(A)P_H$$
, for all $t \ge 0$ and $A \in \mathfrak{B}(K)$.

$$\begin{array}{c} \mathcal{B}(K) \xrightarrow{\vartheta_t} \mathcal{B}(K) \\ \downarrow^{P_H \bullet P_H} & \downarrow^{P_H \bullet P_H} \\ \mathcal{B}(H) \xrightarrow{T_t} \mathcal{B}(H) \end{array}$$

Theorem (Bhat, 1996)

Let $T = (T_t)_{t\geq 0}$ be a CP-semigroup on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and an E-semigroup $\vartheta = (\vartheta_t)_{t\geq 0}$ on $\mathcal{B}(K)$, such that

 $T_t(A) = P_H \vartheta_t(A) P_H$, for all $t \ge 0$ and $A \in \mathcal{B}(H)$.

Theorem (Bhat, 1996)

Let $T = (T_t)_{t\geq 0}$ be a CP-semigroup on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and an E-semigroup $\vartheta = (\vartheta_t)_{t\geq 0}$ on $\mathcal{B}(K)$, such that

 $T_t(A) = P_H \vartheta_t(A) P_H$, for all $t \ge 0$ and $A \in \mathfrak{B}(H)$.

Interpretation

An irreversible quantum dynamical system can be embedded in a reversible one (ϑ can be extended to a group of *-automorphisms).

Theorem (Bhat, 1996)

Let $T = (T_t)_{t\geq 0}$ be a CP-semigroup on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and an E-semigroup $\vartheta = (\vartheta_t)_{t\geq 0}$ on $\mathcal{B}(K)$, such that

 $T_t(A) = P_H \vartheta_t(A) P_H$, for all $t \ge 0$ and $A \in \mathfrak{B}(H)$.

Interpretation

An irreversible quantum dynamical system can be embedded in a reversible one (ϑ can be extended to a group of *-automorphisms).

Application

An index for quantum dynamical semigroups (Bhat).

Theorem (Bhat, 1996)

Let $T = (T_t)_{t\geq 0}$ be a CP-semigroup on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and an E-semigroup $\vartheta = (\vartheta_t)_{t\geq 0}$ on $\mathcal{B}(K)$, such that

 $T_t(A) = P_H \vartheta_t(A) P_H$, for all $t \ge 0$ and $A \in \mathfrak{B}(H)$.

Interpretation

An irreversible quantum dynamical system can be embedded in a reversible one (ϑ can be extended to a group of *-automorphisms).

Application

An index for quantum dynamical semigroups (Bhat).

Remark

Different notions of dilations of CP-semigroups have been studied since 70s: Davies, Evans-Lewis, Hudson-Parthasarathy, Kummerer, Sauvageout ...

We study the possible generalizations of Bhat's theorem to CP-semigroups on a unital C*-algebra, paramaterized by a semigroup $\mathbb S,$ and beyond.

We study the possible generalizations of Bhat's theorem to CP-semigroups on a unital C*-algebra, paramaterized by a semigroup S, and beyond. For the presentation, narrow the scope:

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup over $\mathbb{S} \subseteq \mathbb{R}^k_+$, acting on a von Neumann algebra \mathcal{B} , such that every T_s is a normal map.

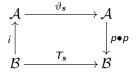
We study the possible generalizations of Bhat's theorem to CP-semigroups on a unital C*-algebra, paramaterized by a semigroup S, and beyond. For the presentation, narrow the scope:

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup over $\mathbb{S} \subseteq \mathbb{R}^k_+$, acting on a von Neumann algebra \mathcal{B} , such that every T_s is a normal map.

Definition

A dilation of \mathcal{T} is a triple $(\mathcal{A}, \vartheta, p)$, where \mathcal{A} is a von Neumann algebra, $\vartheta = (\vartheta_s)_{s \in \mathbb{S}}$ is a semigroup of normal *-endomorphism, and $p \in \mathcal{A}$ is a projection, such that $\mathcal{B} = p\mathcal{A}p$, and such that

$$T_s(b) = p \vartheta_s(b) p$$
 for all $b \in \mathcal{B}, s \in \mathbb{S}$.



Arveson, Bhat, Bhat-Skeide, Markiewicz, Muhly-Solel, Powers, SeLegue, S., S.-Solel, Solel, Vernik,...

We study the possible generalizations of Bhat's theorem to CP-semigroups on a unital C*-algebra, paramaterized by a semigroup S, and beyond. For the presentation, narrow the scope:

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup over $\mathbb{S} \subseteq \mathbb{R}^k_+$, acting on a von Neumann algebra \mathcal{B} , such that every T_s is a normal map.

Definition

A dilation of \mathcal{T} is a triple $(\mathcal{A}, \vartheta, p)$, where \mathcal{A} is a von Neumann algebra, $\vartheta = (\vartheta_s)_{s \in \mathbb{S}}$ is a semigroup of normal *-endomorphism, and $p \in \mathcal{A}$ is a projection, such that $\mathcal{B} = p\mathcal{A}p$, and such that

$$T_s(b) = p \vartheta_s(b) p$$
 for all $b \in \mathcal{B}, s \in \mathbb{S}$.

Questions

1. Find necessary & sufficient conditions for existence of dilation.

2. For fixed k, does every CP-semigroup over \mathbb{N}^k have a dilation?

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique W*-correspondence² \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

$$\operatorname{span}\overline{\mathcal{B}\xi\mathcal{B}}^s=\mathcal{E}$$

and

$$\langle \xi, b \xi \rangle = T(b) \quad \text{ for all } b \in \mathcal{B}.$$

²A bimodule over \mathcal{B} , that has a \mathcal{B} -valued inner product. Equivalently, one may use Skeide's **von Neumann modules** (and we do).

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique W*-correspondence² \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

span
$$\overline{\mathcal{B}\xi\mathcal{B}}^{s}=\mathcal{E}$$

and

$$\langle \xi, b\xi \rangle = T(b) \quad \text{for all } b \in \mathcal{B}.$$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x \otimes y)d = ax \otimes yd.$$

²A bimodule over \mathcal{B} , that has a \mathcal{B} -valued inner product. Equivalently, one may use Skeide's **von Neumann modules** (and we do).

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique W*-correspondence² \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

span
$$\overline{\mathcal{B}\xi\mathcal{B}}^{s}=\mathcal{E}$$

and

$$\langle \xi, b \xi \rangle = T(b) \quad \text{for all } b \in \mathcal{B}.$$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x \otimes y)d = ax \otimes yd.$$

Complete the quotient, and put $\xi = 1 \otimes 1$.

²A bimodule over \mathcal{B} , that has a \mathcal{B} -valued inner product. Equivalently, one may use Skeide's **von Neumann modules** (and we do).

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique W*-correspondence² \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

span
$$\overline{\mathcal{B}\xi\mathcal{B}}^{s}=\mathcal{E}$$

and

$$\langle \xi, b\xi \rangle = T(b) \quad \text{for all } b \in \mathcal{B}.$$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x \otimes y)d = ax \otimes yd.$$

$$\langle \xi, b \xi \rangle$$

 $^{^2}A$ bimodule over ${\cal B},$ that has a ${\cal B}\mbox{-valued}$ inner product. Equivalently, one may use Skeide's von Neumann modules (and we do).

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique W*-correspondence² \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

span
$$\overline{\mathcal{B}\xi\mathcal{B}}^{s}=\mathcal{E}$$

and

$$\langle \xi, b\xi \rangle = T(b) \quad \text{ for all } b \in \mathcal{B}.$$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x \otimes y)d = ax \otimes yd.$$

$$\langle \xi, b \xi
angle = \langle 1 \otimes 1, b \otimes 1
angle$$

²A bimodule over \mathcal{B} , that has a \mathcal{B} -valued inner product. Equivalently, one may use Skeide's **von Neumann modules** (and we do).

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique W*-correspondence² \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

span
$$\overline{\mathcal{B}\xi\mathcal{B}}^{s}=\mathcal{E}$$

and

$$\langle \xi, b\xi \rangle = T(b) \quad \text{for all } b \in \mathcal{B}.$$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x \otimes y)d = ax \otimes yd.$$

$$\langle \xi, b \xi \rangle = \langle 1 \otimes 1, b \otimes 1 \rangle = 1^* T(1^*b) 1 = T(b).$$

²A bimodule over \mathcal{B} , that has a \mathcal{B} -valued inner product. Equivalently, one may use Skeide's **von Neumann modules** (and we do).

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique W*-correspondence³ \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

 $\operatorname{span}\overline{\mathcal{B}\xi\mathcal{B}}^s=\mathcal{E}$

and

$$\langle \xi, b \xi \rangle = T(b) \quad \text{for all } b \in \mathcal{B}.$$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x \otimes y)d = ax \otimes yd.$$

$$\langle \xi, b \xi \rangle = \langle 1 \otimes 1, b \otimes 1 \rangle = 1^* T(1^*b) 1 = T(b).$$

³A bimodule over \mathcal{B} , that has a \mathcal{B} -valued inner product. Equivalently, one may use Skeide's **von Neumann modules** (and we do).

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} . For every *s*, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s .

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} . For every *s*, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s . For *s*, $t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t \ (\text{ really } \mathcal{E}_s \overline{\odot}^s \mathcal{E}_t \)$$

by

$$w_{s,t}: a\xi_{s+t}b \mapsto a\xi_s \odot \xi_t b,$$

and then extend linearly.

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} . For every *s*, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s . For *s*, $t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t \ (\text{ really } \mathcal{E}_s \overline{\odot}^s \mathcal{E}_t \)$$

by

$$w_{s,t}: a\xi_{s+t}b \mapsto a\xi_s \odot \xi_t b,$$

and then extend linearly. We check:

 $\langle a\xi_s \odot \xi_t b, a\xi_s \odot \xi_t b \rangle$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} . For every *s*, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s . For *s*, $t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t \ (\text{ really } \mathcal{E}_s \overline{\odot}^s \mathcal{E}_t \)$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb,$$

$$\langle a\xi_s \odot \xi_t b, a\xi_s \odot \xi_t b \rangle = \langle \xi_t b, \langle a\xi_s, a\xi_s \rangle \xi_t b \rangle$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} . For every *s*, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s . For *s*, $t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t \ (\text{ really } \mathcal{E}_s \overline{\odot}^s \mathcal{E}_t \)$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb,$$

$$\langle a\xi_s \odot \xi_t b, a\xi_s \odot \xi_t b \rangle = \langle \xi_t b, \langle a\xi_s, a\xi_s \rangle \xi_t b \rangle = b^* \langle \xi_t, T_s(a^*a)\xi_t \rangle b$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} . For every *s*, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s . For *s*, $t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t \ (\text{ really } \mathcal{E}_s \overline{\odot}^s \mathcal{E}_t \)$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb,$$

$$\langle a\xi_s \odot \xi_t b, a\xi_s \odot \xi_t b \rangle = \langle \xi_t b, \langle a\xi_s, a\xi_s \rangle \xi_t b \rangle = b^* \langle \xi_t, T_s(a^*a)\xi_t \rangle b =$$

$$= b^* T_t(T_s(a^*a))b$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} . For every *s*, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s . For *s*, $t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t \ (\text{ really } \mathcal{E}_s \overline{\odot}^s \mathcal{E}_t \)$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb,$$

$$\langle a\xi_s \odot \xi_t b, a\xi_s \odot \xi_t b \rangle = \langle \xi_t b, \langle a\xi_s, a\xi_s \rangle \xi_t b \rangle = b^* \langle \xi_t, T_s(a^*a)\xi_t \rangle b =$$

$$= b^* T_t(T_s(a^*a))b = b^* T_{t+s}(a^*a)b$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} . For every *s*, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s . For *s*, $t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t \ (\text{ really } \mathcal{E}_s \overline{\odot}^s \mathcal{E}_t \)$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb,$$

and then extend linearly. We check:

$$\langle a\xi_s \odot \xi_t b, a\xi_s \odot \xi_t b \rangle = \langle \xi_t b, \langle a\xi_s, a\xi_s \rangle \xi_t b \rangle = b^* \langle \xi_t, T_s(a^*a)\xi_t \rangle b =$$

$$=b^*T_t(T_s(a^*a))b=b^*T_{t+s}(a^*a)b=\langle a\xi_{s+t}b,a\xi_{s+t}b\rangle.$$

 $w_{s,t}$ is an isometry!

Subproduct systems⁴

Definition

A subproduct system is a family $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, together with a family $\{w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t\}$ of isometric bimodule maps, which iterate associatively

⁴Inclusion systems by Bhat-Mukherjee.

Subproduct systems⁴

Definition

A subproduct system is a family $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, together with a family $\{w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t\}$ of isometric bimodule maps, which iterate associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

$$\begin{array}{c} \mathcal{E}_{r+s+t} \longrightarrow \mathcal{E}_r \odot \mathcal{E}_{s+t} \\ \downarrow \\ \mathcal{E}_{r+s} \odot \mathcal{E}_t \longrightarrow \mathcal{E}_r \odot \mathcal{E}_s \odot \mathcal{E}_t \end{array}$$

⁴Inclusion systems by Bhat-Mukherjee.

Subproduct systems⁴

Definition

A subproduct system is a family $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, together with a family $\{w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t\}$ of isometric bimodule maps, which iterate associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

$$\begin{array}{c} \mathcal{E}_{r+s+t} \longrightarrow \mathcal{E}_r \odot \mathcal{E}_{s+t} \\ \downarrow \\ \mathcal{E}_{r+s} \odot \mathcal{E}_t \longrightarrow \mathcal{E}_r \odot \mathcal{E}_s \odot \mathcal{E}_t \end{array}$$

A product system is a subproduct system in which $w_{s,t}$ are all unitaries.

⁴Inclusion systems by Bhat-Mukherjee.

Subproduct systems⁴

Definition

A subproduct system is a family $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, together with a family $\{w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t\}$ of isometric bimodule maps, which iterate associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

A product system is a subproduct system in which $w_{s,t}$ are all unitaries.

Definition

A family $\{\xi_s \in \mathcal{E}_s\}_{s \in \mathbb{S}}$ is called a **unit** if $w_{s,t}\xi_{s+t} = \xi_s \odot \xi_t$ for all s, t.

⁴Inclusion systems by Bhat-Mukherjee.

Subproduct system: $\mathcal{E}_s \odot \mathcal{E}_t \supseteq \mathcal{E}_{s+t}$ (or $\mathcal{E}_s \overline{\odot}^s \mathcal{E}_t$, etc.)

Product system: $E_s \odot E_t = E_{s+t}$

Subproduct system: $\mathcal{E}_{s} \odot \mathcal{E}_{t} \supseteq \mathcal{E}_{s+t}$ (or $\mathcal{E}_{s} \overline{\odot}^{s} \mathcal{E}_{t}$, etc.)

Subproduct system: Product system: Unit:

$$\begin{aligned} \mathcal{E}_{s} \odot \mathcal{E}_{t} \supseteq \mathcal{E}_{s+t} & \text{(or } \mathcal{E}_{s} \overline{\odot}^{s} \mathcal{E}_{t} \text{, etc.)} \\ \mathcal{E}_{s} \odot \mathcal{E}_{t} = \mathcal{E}_{s+t} \\ \xi_{s} \odot \xi_{t} = \xi_{s+t} \end{aligned}$$

 $\begin{array}{ll} \text{Subproduct system:} & \mathcal{E}_s \odot \mathcal{E}_t \supseteq \mathcal{E}_{s+t} \quad (\text{or } \mathcal{E}_s \overline{\odot}^s \mathcal{E}_t \text{ , etc.}) \\ \text{Product system:} & E_s \odot \mathcal{E}_t = \mathcal{E}_{s+t} \\ \text{Unit:} & \xi_s \odot \xi_t = \xi_{s+t} \end{array}$

For every CP-semigroup on \mathcal{B} , there exists a subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences (called the **GNS subproduct system**) and a unit $(\xi_s)_{s \in \mathbb{S}}$ such that

$$T_s(b) = \langle \xi_s, b\xi_s \rangle$$
 for all $s \in \mathbb{S}, b \in \mathcal{B}$.

 $\begin{array}{ll} \text{Subproduct system:} & \mathcal{E}_s \odot \mathcal{E}_t \supseteq \mathcal{E}_{s+t} \quad (\text{or } \mathcal{E}_s \overline{\odot}^s \mathcal{E}_t \text{ , etc.}) \\ \text{Product system:} & E_s \odot \mathcal{E}_t = \mathcal{E}_{s+t} \\ \text{Unit:} & \xi_s \odot \xi_t = \xi_{s+t} \end{array}$

For every CP-semigroup on \mathcal{B} , there exists a subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences (called the **GNS subproduct system**) and a unit $(\xi_s)_{s \in \mathbb{S}}$ such that

$$T_s(b) = \langle \xi_s, b\xi_s \rangle$$
 for all $s \in \mathbb{S}, b \in \mathcal{B}$.

Theorem (Following Bhat-Skeide, 2000)

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded in a product system, then T has a unital dilation $(\mathcal{A}, \vartheta, p)$.

Subproduct system: $\mathcal{E}_s \odot \mathcal{E}_t \supseteq \mathcal{E}_{s+t}$ (or $\mathcal{E}_s \overline{\odot}^s \mathcal{E}_t$, etc.)Product system: $E_s \odot \mathcal{E}_t = E_{s+t}$ Unit: $\xi_s \odot \xi_t = \xi_{s+t}$

For every CP-semigroup on \mathcal{B} , there exists a subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences (called the **GNS subproduct system**) and a unit $(\xi_s)_{s \in \mathbb{S}}$ such that

$$T_s(b) = \langle \xi_s, b\xi_s \rangle$$
 for all $s \in \mathbb{S}, b \in \mathcal{B}$.

Theorem (Following Bhat-Skeide, 2000)

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded in a **product system**, then T has a unital dilation $(\mathcal{A}, \vartheta, p)$. In fact, one can take $\mathcal{A} = \mathbb{B}^{a}(E)$, where E is some (full) \mathcal{B} -correspondence.

Markov semigroup = unital CP-semigroup.

Theorem (S.-Skeide, see also Bhat 98, Solel 2006)

Every Markov semigroup over \mathbb{N}^2 has a unital dilation:

Theorem (S.-Skeide, see also Bhat 98, Solel 2006)

Every Markov semigroup over \mathbb{N}^2 has a unital dilation: If T_1 , T_2 are two commuting normal unital CP maps on a vN algebra \mathcal{B} , then there exist two commuting normal unital *-endomorphisms ϑ_1, ϑ_2 on a vN algebra \mathcal{A} containing \mathcal{B} , a projection $p \in \mathcal{A}$ such that $\mathcal{B} = p\mathcal{A}p$,

Theorem (S.-Skeide, see also Bhat 98, Solel 2006)

Every Markov semigroup over \mathbb{N}^2 has a unital dilation: If T_1 , T_2 are two commuting normal unital CP maps on a vN algebra \mathcal{B} , then there exist two commuting normal unital *-endomorphisms ϑ_1, ϑ_2 on

a vN algebra A containing B, a projection $p \in A$ such that B = pAp, and

 $T_1^{n_1} \circ T_2^{n_2}(b) = p \vartheta_1^{n_1} \circ \vartheta_2^{n_2}(b) p \quad \text{for all } b \in \mathcal{B}, n_1, n_2 \in \mathbb{N}.$

Theorem (S.-Skeide, see also Bhat 98, Solel 2006)

Every Markov semigroup over \mathbb{N}^2 has a unital dilation:

If T_1 , T_2 are two commuting normal unital CP maps on a vN algebra \mathcal{B} , then there exist two commuting normal unital *-endomorphisms ϑ_1, ϑ_2 on a vN algebra \mathcal{A} containing \mathcal{B} , a projection $p \in \mathcal{A}$ such that $\mathcal{B} = p\mathcal{A}p$, and

$$T_1^{n_1} \circ T_2^{n_2}(b) = p \vartheta_1^{n_1} \circ \vartheta_2^{n_2}(b) p \quad \text{for all } b \in \mathcal{B}, n_1, n_2 \in \mathbb{N}.$$

Proof.

Given a Markov semigroup over \mathbb{N}^2 , we construct a product system that contains the GNS subproduct system of that semigroup.

Theorem (S.-Skeide, see also Bhat 98, Solel 2006)

Every Markov semigroup over \mathbb{N}^2 has a unital dilation:

If T_1 , T_2 are two commuting normal unital CP maps on a vN algebra \mathcal{B} , then there exist two commuting normal unital *-endomorphisms ϑ_1, ϑ_2 on a vN algebra \mathcal{A} containing \mathcal{B} , a projection $p \in \mathcal{A}$ such that $\mathcal{B} = p\mathcal{A}p$, and

$$T_1^{n_1} \circ T_2^{n_2}(b) = p \vartheta_1^{n_1} \circ \vartheta_2^{n_2}(b) p \quad \text{for all } b \in \mathcal{B}, n_1, n_2 \in \mathbb{N}.$$

Proof.

Given a Markov semigroup over \mathbb{N}^2 , we construct a product system that contains the GNS subproduct system of that semigroup. Then apply previous theorem.

Theorem (S.-Skeide, see also Bhat 98, Solel 2006)

Every Markov semigroup over \mathbb{N}^2 has a unital dilation:

If T_1 , T_2 are two commuting normal unital CP maps on a vN algebra \mathcal{B} , then there exist two commuting normal unital *-endomorphisms ϑ_1, ϑ_2 on a vN algebra \mathcal{A} containing \mathcal{B} , a projection $p \in \mathcal{A}$ such that $\mathcal{B} = p\mathcal{A}p$, and

$$T_1^{n_1} \circ T_2^{n_2}(b) = p \vartheta_1^{n_1} \circ \vartheta_2^{n_2}(b) p \quad \text{for all } b \in \mathcal{B}, n_1, n_2 \in \mathbb{N}.$$

Proof.

Given a Markov semigroup over \mathbb{N}^2 , we construct a product system that contains the GNS subproduct system of that semigroup. Then apply previous theorem.

Remark: In fact we have $\mathcal{A} = \overline{\mathcal{A}p\mathcal{A}}^s = \mathcal{B}^a(E)$, where $E = \overline{\mathcal{A}p}^s$. In particular, \mathcal{A} is **Morita equivalent** to \mathcal{B} (in the sense of Rieffel).

A sufficient condition for the existence of a dilation for a unital CP-semigroup T is that its GNS subproduct system embeds into a product system.

A sufficient condition for the existence of a dilation for a unital CP compared to the constant of the cons

CP-semigroup \mathcal{T} is that its GNS subproduct system embeds into a product system.

What about the converse direction?

A sufficient condition for the existence of a dilation for a unital

CP-semigroup \mathcal{T} is that its GNS subproduct system embeds into a product system.

What about the converse direction?

Theorem (S.-Skeide)

• If a Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a minimal dilation then its GNS subproduct system embeds into a product system.

A sufficient condition for the existence of a dilation for a unital

CP-semigroup \mathcal{T} is that its GNS subproduct system embeds into a product system.

What about the converse direction?

Theorem (S.-Skeide)

• If a Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a minimal dilation then its GNS subproduct system embeds into a product system.

• A Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a dilation $(\mathcal{B}^a(E), \vartheta, p)$ where E is a (full) \mathcal{B} -correspondence, if and only if its GNS subproduct system embeds into a product system.

A sufficient condition for the existence of a dilation for a unital

CP-semigroup \mathcal{T} is that its GNS subproduct system embeds into a product system.

What about the converse direction?

Theorem (S.-Skeide)

• If a Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a minimal dilation then its GNS subproduct system embeds into a product system.

• A Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a dilation $(\mathbb{B}^a(E), \vartheta, p)$ where E is a (full) \mathcal{B} -correspondence, if and only if its GNS subproduct system embeds into a product system.

Caveats:

1. We did not define what "minimal" means.

A sufficient condition for the existence of a dilation for a unital

CP-semigroup \mathcal{T} is that its GNS subproduct system embeds into a product system.

What about the converse direction?

Theorem (S.-Skeide)

• If a Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a minimal dilation then its GNS subproduct system embeds into a product system.

• A Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a dilation $(\mathbb{B}^a(E), \vartheta, p)$ where E is a (full) \mathcal{B} -correspondence, if and only if its GNS subproduct system embeds into a product system.

Caveats:

1. We did not define what "minimal" means.

2. Over \mathbb{N}^k $(k \ge 2)$, minimal dilations are not unique.

A sufficient condition for the existence of a dilation for a unital

CP-semigroup \mathcal{T} is that its GNS subproduct system embeds into a product system.

What about the converse direction?

Theorem (S.-Skeide)

• If a Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a minimal dilation then its GNS subproduct system embeds into a product system.

• A Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a dilation $(\mathbb{B}^a(E), \vartheta, p)$ where E is a (full) \mathcal{B} -correspondence, if and only if its GNS subproduct system embeds into a product system.

Caveats:

- 1. We did not define what "minimal" means.
- 2. Over \mathbb{N}^k $(k \ge 2)$, minimal dilations are not unique.

3. Over \mathbb{N}^k $(k \ge 2)$, a given dilation might not be "minimalizable", that is, cannot be compressed or restricted to a minimal one (new and weird).

A sufficient condition for the existence of a dilation for a unital

CP-semigroup \mathcal{T} is that its GNS subproduct system embeds into a product system.

What about the converse direction?

Theorem (S.-Skeide)

• If a Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a minimal dilation then its GNS subproduct system embeds into a product system.

• A Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a dilation $(\mathbb{B}^a(E), \vartheta, p)$ where E is a (full) \mathcal{B} -correspondence, if and only if its GNS subproduct system embeds into a product system.

Caveats:

1. We did not define what "minimal" means.

2. Over \mathbb{N}^k $(k \ge 2)$, minimal dilations are not unique.

3. Over \mathbb{N}^k $(k \ge 2)$, a given dilation might not be "minimalizable", that is, cannot be compressed or restricted to a minimal one (new and weird).

4. What about dilations $(\mathcal{A}, \vartheta, p)$, where $\mathcal{A} \neq \mathcal{B}^{a}(E)$?

Theorem (S.-Skeide)

• If a Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a minimal dilation then its GNS subproduct system embeds into a product system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over \mathbb{N}^3 for which there is no **minimal** dilation.

Theorem (S.-Skeide)

• If a Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a minimal dilation then its GNS subproduct system embeds into a product system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over \mathbb{N}^3 for which there is no **minimal** dilation.

"Proof" (not really...)

[S.-Solel] construct a subproduct system over \mathbb{N}^3 that cannot be embedded into a product system. We apply the above theorem to that subproduct system.

Theorem (S.-Skeide)

• If a Markov semigroup $T = (T_s)_{s \in \mathbb{S}}$ has a minimal dilation then its GNS subproduct system embeds into a product system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over \mathbb{N}^3 for which there is no **minimal** dilation.

"Proof" (not really...)

[S.-Solel] construct a subproduct system over \mathbb{N}^3 that cannot be embedded into a product system. We apply the above theorem to that subproduct system.

Problem: this does not rule out the existence of non-minimal dilations.

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup over \mathbb{S} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Suppose that $\mathcal{B} \subseteq \mathcal{B}(H)$ and that $\mathcal{A} \subseteq \mathcal{B}(K)$, so that $p = P_H$.

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup over \mathbb{S} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Suppose that $\mathcal{B} \subseteq \mathcal{B}(\mathcal{H})$ and that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$, so that $p = P_{\mathcal{H}}$. There are three properties that one may require for "minimality":

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup over \mathbb{S} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Suppose that $\mathcal{B} \subseteq \mathcal{B}(\mathcal{H})$ and that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$, so that $p = P_{\mathcal{H}}$. There are three properties that one may require for "minimality":

1. "Algebraic minimality", that is

$$\mathcal{A} = W^*(\cup_{s\in\mathbb{S}}\vartheta_s(\mathcal{B})).$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup over \mathbb{S} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Suppose that $\mathcal{B} \subseteq \mathcal{B}(\mathcal{H})$ and that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$, so that $p = P_{\mathcal{H}}$. There are three properties that one may require for "minimality":

1. "Algebraic minimality", that is

$$\mathcal{A} = W^*(\cup_{s\in\mathbb{S}}\vartheta_s(\mathcal{B})).$$

2. "Spatial minimality", that is, $\mathcal{A} = \overline{\mathcal{A}p\mathcal{A}}^{s}$. Assuming 1, same as:

 $\mathcal{K} = \overline{\mathsf{span}\{\vartheta_{s_1}(b_1)\cdots\vartheta_{s_n}(b_n)h: s_i\in\mathbb{S}, b_i\in\mathcal{B}, h\in H\}}.$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup over \mathbb{S} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Suppose that $\mathcal{B} \subseteq \mathcal{B}(\mathcal{H})$ and that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$, so that $p = P_{\mathcal{H}}$. There are three properties that one may require for "minimality":

1. "Algebraic minimality", that is

$$\mathcal{A} = W^*(\cup_{s\in\mathbb{S}}\vartheta_s(\mathcal{B})).$$

2. "Spatial minimality", that is, $\mathcal{A} = \overline{\mathcal{A}p\mathcal{A}}^{s}$. Assuming 1, same as:

$$\mathcal{K} = \overline{\mathsf{span}\{\vartheta_{s_1}(b_1)\cdots\vartheta_{s_n}(b_n)h: s_i\in\mathbb{S}, b_i\in\mathcal{B}, h\in H\}}.$$

3. "Incompressibility": there is no nontrivial projection $p \leq q \in A$ s.t.

$$qartheta_{s}(\cdot)q: q\mathcal{A}q
ightarrow q\mathcal{A}q \ , \ qartheta_{s}(\cdot)q: qaq \mapsto qartheta_{s}(qaq)q,$$

is an E-semigroup, and a dilation of T.

- 1. $\mathcal{A} = W^*(\cup_{s \in \mathbb{S}} \vartheta_s(\mathcal{B})).$
- 2. $\mathcal{A} = \overline{\mathcal{A}p\mathcal{A}}^{s}$.
- 3. No nontrivial projection $p \leq q \neq 1$ in \mathcal{A} s.t. $q\vartheta_s(\cdot)q$ is a dilation.

- 1. $\mathcal{A} = W^*(\cup_{s \in \mathbb{S}} \vartheta_s(\mathcal{B})).$ 2. $\mathcal{A} = \overline{\mathcal{A}p\mathcal{A}}^s.$
- 3. No nontrivial projection $p \leq q \neq 1$ in \mathcal{A} s.t. $q\vartheta_s(\cdot)q$ is a dilation.

The notion of **minimality** referred to in theorem and corollary above is the strongest one: 1+2. (This also implies 3).

1.
$$\mathcal{A} = W^*(\cup_{s \in \mathbb{S}} \vartheta_s(\mathcal{B})).$$

2. $\mathcal{A} = \overline{\mathcal{A}p\mathcal{A}}^s.$

3. No nontrivial projection $p \leq q \neq 1$ in \mathcal{A} s.t. $q\vartheta_s(\cdot)q$ is a dilation.

The notion of **minimality** referred to in theorem and corollary above is the strongest one: 1+2. (This also implies 3).

It is easy to restrict to a semigroup satisfying 1, and not hard to compress to obtain 1+3, but that is not the notion that works best (M.E.).

1.
$$\mathcal{A} = W^*(\cup_{s \in \mathbb{S}} \vartheta_s(\mathcal{B})).$$

2. $\mathcal{A} = \overline{\mathcal{A}p\mathcal{A}}^s.$

3. No nontrivial projection $p \leq q \neq 1$ in \mathcal{A} s.t. $q\vartheta_s(\cdot)q$ is a dilation.

The notion of **minimality** referred to in theorem and corollary above is the strongest one: 1+2. (This also implies 3).

It is easy to restrict to a semigroup satisfying 1, and not hard to compress to obtain 1+3, but that is not the notion that works best (M.E.).

```
Over \mathbb{R}_+ (and \mathbb{N}), 1+2 is equivalent to 1+3. (non-trivial!)
```

1.
$$\mathcal{A} = W^*(\cup_{s \in \mathbb{S}} \vartheta_s(\mathcal{B})).$$

2. $\mathcal{A} = \overline{\mathcal{A}p\mathcal{A}}^s.$

3. No nontrivial projection $p \leq q \neq 1$ in \mathcal{A} s.t. $q\vartheta_s(\cdot)q$ is a dilation.

The notion of **minimality** referred to in theorem and corollary above is the strongest one: 1+2. (This also implies 3).

It is easy to restrict to a semigroup satisfying 1, and not hard to compress to obtain 1+3, but that is not the notion that works best (M.E.).

Over \mathbb{R}_+ (and \mathbb{N}), 1+2 is equivalent to 1+3. (non-trivial!)

We have an example of a dilation $(\mathcal{A}, \vartheta, p)$ over \mathbb{N}^2 , which satisfies 2, but not 1. After restricting to $W^*(\bigcup_{s\in\mathbb{S}}\vartheta_s(\mathcal{B}))$, and then compressing to the minimal compressing q, one obtains an algebraically minimal and incompressible dilation (1+3), which does **not** satisfy 2.

Dilation \Rightarrow what?

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Following a construction from [Skeide02], we see what structure arises.

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Following a construction from [Skeide02], we see what structure arises. Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Following a construction from [Skeide02], we see what structure arises. Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p \quad , \quad E_s := \vartheta_s(p)E.$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Following a construction from [Skeide02], we see what structure arises. Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p$$
, $E_s := \vartheta_s(p)E$.

W*-correspondence structure:

$$\begin{split} b \cdot x_s &:= \vartheta_s(b) x_s \quad , \quad x_s \cdot b := xb, \quad x_s \in E_s, \, b \in \mathcal{B}. \\ &\langle x_s, y_s \rangle := x_s^* y_s \in p \mathcal{A} p = \mathcal{B}. \end{split}$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Following a construction from [Skeide02], we see what structure arises. Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p$$
, $E_s := \vartheta_s(p)E$.

W*-correspondence structure:

$$\begin{split} b \cdot x_s &:= \vartheta_s(b) x_s \quad , \quad x_s \cdot b := xb, \quad x_s \in E_s, b \in \mathcal{B}. \\ &\langle x_s, y_s \rangle := x_s^* y_s \in p \mathcal{A} p = \mathcal{B}. \end{split}$$

Unit:

$$\eta_{s} := \vartheta_{s}(p)p \in E_{s}.$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Following a construction from [Skeide02], we see what structure arises. Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p$$
, $E_s := \vartheta_s(p)E$.

W*-correspondence structure:

$$b \cdot x_{s} := \vartheta_{s}(b)x_{s} \quad , \quad x_{s} \cdot b := xb, \quad x_{s} \in E_{s}, b \in \mathcal{B}.$$
$$\langle x_{s}, y_{s} \rangle := x_{s}^{*}y_{s} \in p\mathcal{A}p = \mathcal{B}.$$

Unit:

$$\eta_{s} := \vartheta_{s}(p)p \in E_{s}.$$

 (E_s, η_s) represents T

$$\langle \eta_s, b \cdot \eta_s \rangle$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Following a construction from [Skeide02], we see what structure arises. Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p$$
, $E_s := \vartheta_s(p)E$.

W*-correspondence structure:

$$b \cdot x_s := \vartheta_s(b)x_s \quad , \quad x_s \cdot b := xb, \quad x_s \in E_s, b \in \mathcal{B}.$$
$$\langle x_s, y_s \rangle := x_s^* y_s \in p\mathcal{A}p = \mathcal{B}.$$

Unit:

$$\eta_{s} := \vartheta_{s}(p)p \in E_{s}.$$

 (E_s, η_s) represents T

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(p) \vartheta_s(b) \vartheta_s(p) p = p \vartheta_s(b) p$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Following a construction from [Skeide02], we see what structure arises. Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p$$
, $E_s := \vartheta_s(p)E$.

W*-correspondence structure:

$$\begin{split} b \cdot x_s &:= \vartheta_s(b) x_s \quad , \quad x_s \cdot b := xb, \quad x_s \in E_s, \, b \in \mathcal{B}. \\ \langle x_s, y_s \rangle &:= x_s^* y_s \in p \mathcal{A} p = \mathcal{B}. \end{split}$$

Unit:

$$\eta_{s} := \vartheta_{s}(p)p \in E_{s}.$$

 (E_s, η_s) represents T

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(p) \vartheta_s(b) \vartheta_s(p) p = p \vartheta_s(b) p = T_s(b).$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b).$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b).$$

Hence (E_s, η_s) "contains" the GNS representation (\mathcal{E}_s, ξ_s) of \mathcal{T}_s .

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b).$$

Hence (E_s, η_s) "contains" the GNS representation (\mathcal{E}_s, ξ_s) of \mathcal{T}_s .

Q:

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b).$$

Hence (E_s, η_s) "contains" the GNS representation (\mathcal{E}_s, ξ_s) of \mathcal{T}_s .

Q: is
$$(E_s)_{s\in\mathbb{S}}$$
 a **PRODUCT** system?

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Let $((E_s)_{s \in \mathbb{S}}, (\eta_s)_{s \in \mathbb{S}})$ be as above, $\langle \eta_s, b \cdot \eta_s \rangle = T_s(b)$.

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Let $((E_s)_{s \in \mathbb{S}}, (\eta_s)_{s \in \mathbb{S}})$ be as above, $\langle \eta_s, b \cdot \eta_s \rangle = T_s(b)$. Define

$$\begin{split} v_{s,t} &: E_s \odot E_t \to E_{s+t} \ (\text{ really } E_s \overline{\odot}^s E_t \) \\ v_{s,t} &: x_s \odot y_t \mapsto \vartheta_t(x_s) y_t \ . \end{split}$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Let $((E_s)_{s \in \mathbb{S}}, (\eta_s)_{s \in \mathbb{S}})$ be as above, $\langle \eta_s, b \cdot \eta_s \rangle = T_s(b)$. Define

$$\begin{aligned} v_{s,t} &: E_s \odot E_t \to E_{s+t} \quad (\text{ really } E_s \overline{\odot}^s E_t \) \\ v_{s,t} &: x_s \odot y_t \mapsto \vartheta_t(x_s) y_t \ . \end{aligned}$$

A direct calculation shows:

$$\langle x_s \odot y_t, x'_s \odot y'_t \rangle = \ldots = \langle \vartheta_t(x_s)y_t, \vartheta_t(x'_s)y'_t \rangle.$$

Hence $v_{s,t}: E_s \odot E_t \rightarrow E_{s+t}$ is an isometry:

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Let $((E_s)_{s \in \mathbb{S}}, (\eta_s)_{s \in \mathbb{S}})$ be as above, $\langle \eta_s, b \cdot \eta_s \rangle = T_s(b)$. Define

$$\begin{aligned} v_{s,t} &: E_s \odot E_t \to E_{s+t} \quad (\text{ really } E_s \overline{\odot}^s E_t \) \\ v_{s,t} &: x_s \odot y_t \mapsto \vartheta_t(x_s) y_t \ . \end{aligned}$$

A direct calculation shows:

$$\langle x_s \odot y_t, x'_s \odot y'_t \rangle = \ldots = \langle \vartheta_t(x_s)y_t, \vartheta_t(x'_s)y'_t \rangle.$$

Hence $v_{s,t}: E_s \odot E_t \rightarrow E_{s+t}$ is an isometry:

$$E_s \odot E_t \subseteq E_{s+t}$$
.

 $(E_s)_{s\in\mathbb{S}}$ is a superproduct system (but not always a product system).

Superproduct systems

Definition

A superproduct system is a family $E^{\otimes} = (E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, together with a family $\{v_{s,t} : E_s \odot E_t \to E_{s+t}\}$ of isometric bimodule maps, which iterate associatively

Superproduct systems

Definition

A superproduct system is a family $E^{\otimes} = (E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, together with a family $\{v_{s,t} : E_s \odot E_t \rightarrow E_{s+t}\}$ of isometric bimodule maps, which iterate associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

Superproduct systems

Definition

A superproduct system is a family $E^{\bigotimes} = (E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, together with a family $\{v_{s,t} : E_s \odot E_t \to E_{s+t}\}$ of isometric bimodule maps, which iterate associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

A product system is a superproduct system in which $v_{s,t}$ are all unitaries.

Subproduct system: Product system: Unit:

$$\begin{aligned} \mathcal{E}_{s} \odot \mathcal{E}_{t} \supseteq \mathcal{E}_{s+t} \\ \mathcal{E}_{s} \odot \mathcal{E}_{t} &= \mathcal{E}_{s+t} \\ \xi_{s} \odot \xi_{t} &= \xi_{s+t} \end{aligned}$$

Subproduct system: Product system: Unit:

$$\mathcal{E}_{s} \odot \mathcal{E}_{t} \supseteq \mathcal{E}_{s+t}$$
$$E_{s} \odot E_{t} = E_{s+t}$$
$$\xi_{s} \odot \xi_{t} = \xi_{s+t}$$

Superproduct system: $E_s \odot E_t \subseteq E_{s+t}$

$$\mathcal{T}_{s}(b) = \langle \xi_{s}, b\xi_{s} \rangle \quad \text{ for all } s \in \mathbb{S}, b \in \mathcal{B}.$$

$$T_s(b) = \langle \xi_s, b\xi_s \rangle \quad \text{ for all } s \in \mathbb{S}, b \in \mathcal{B}.$$

If T unital, and if the GNS subproduct system can be **embedded into a** product system, then T has a dilation $(\mathcal{A}, \vartheta, p)$ (with $\mathcal{A} = \mathcal{B}^{a}(E)$).

$$\mathcal{T}_{s}(b) = \langle \xi_{s}, b\xi_{s} \rangle \quad ext{ for all } s \in \mathbb{S}, b \in \mathcal{B}.$$

If T unital, and if the GNS subproduct system can be **embedded into a** product system, then T has a dilation $(\mathcal{A}, \vartheta, p)$ (with $\mathcal{A} = \mathcal{B}^{a}(E)$).

If T has a dilation (A, ϑ, p) , then the GNS subproduct system must embed into a superproduct system.

Theorem (S.-Skeide)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a dilation, is that the GNS subproduct system of T embeds into a **product** system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Theorem (S.-Skeide)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a dilation, is that the GNS subproduct system of T embeds into a **product** system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over \mathbb{N}^3 that have **no** dilation.

Theorem (S.-Skeide)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a dilation, is that the GNS subproduct system of T embeds into a **product** system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over \mathbb{N}^3 that have **no** dilation.

"Proof" (not really...)

We have an example of a subproduct system over \mathbb{N}^3 that cannot be embedded into a superproduct system.

Theorem (S.-Skeide)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a dilation, is that the GNS subproduct system of T embeds into a **product** system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over \mathbb{N}^3 that have **no** dilation.

"Proof" (not really...)

We have an example of a subproduct system over \mathbb{N}^3 that cannot be embedded into a superproduct system.

The truth: the SPS is not the GNS subproduct system of a CP-semigroup, so the proof does not really go like that ...

Let *E* be a full W*-correspondence over \mathcal{B} , and $\mathcal{B}^{a}(E)$ the **adjointable** operators on *E*. *E* is a **Morita W* equivalence** from $\mathcal{B}^{a}(E)$ to \mathcal{B} :

$$\mathcal{B} = E^* \overline{\odot}^{s} E$$
 , $\mathcal{B}^{a}(E) = E \overline{\odot}^{s} E^*$.

Let *E* be a full W*-correspondence over \mathcal{B} , and $\mathcal{B}^{a}(E)$ the **adjointable** operators on *E*. *E* is a **Morita W* equivalence** from $\mathcal{B}^{a}(E)$ to \mathcal{B} :

$$\mathcal{B} = E^* \overline{\odot}^{s} E$$
 , $\mathcal{B}^{a}(E) = E \overline{\odot}^{s} E^*$.

For $T = (T_s)_{s \in \mathbb{S}}$ a CP-s.g. on $\mathbb{B}^a(E)$, and $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ the GNS SPS

Let *E* be a full W*-correspondence over \mathcal{B} , and $\mathcal{B}^{a}(E)$ the **adjointable** operators on *E*. *E* is a **Morita W* equivalence** from $\mathcal{B}^{a}(E)$ to \mathcal{B} :

$$\mathcal{B}=E^*\overline{\odot}{}^sE\quad,\quad \mathcal{B}^a(E)=E\overline{\odot}{}^sE^*.$$

For $T = (T_s)_{s \in \mathbb{S}}$ a CP-s.g. on $\mathcal{B}^a(E)$, and $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ the GNS SPS consider the **Morita equivalent** subproduct system $\mathcal{F}^{\otimes} = (\mathcal{F}_s)_{s \in \mathbb{S}}$ given by

$$\mathcal{F}_{s} := E^* \overline{\odot}^{s} \mathcal{E}_{s} \overline{\odot}^{s} E.$$

 \mathcal{F}^{\otimes} the subproduct system of \mathcal{B} -correspondences associated with \mathcal{T} .

Let *E* be a full W*-correspondence over \mathcal{B} , and $\mathcal{B}^{a}(E)$ the **adjointable** operators on *E*. *E* is a **Morita W* equivalence** from $\mathcal{B}^{a}(E)$ to \mathcal{B} :

$$\mathcal{B}=E^*\overline{\odot}{}^sE\quad,\quad \mathcal{B}^a(E)=E\overline{\odot}{}^sE^*.$$

For $T = (T_s)_{s \in \mathbb{S}}$ a CP-s.g. on $\mathcal{B}^a(E)$, and $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ the GNS SPS consider the **Morita equivalent** subproduct system $\mathcal{F}^{\otimes} = (\mathcal{F}_s)_{s \in \mathbb{S}}$ given by

$$\mathcal{F}_{s} := E^* \overline{\odot}^{s} \mathcal{E}_{s} \overline{\odot}^{s} E.$$

 \mathcal{F}^{\otimes} the subproduct system of \mathcal{B} -correspondences associated with \mathcal{T} .

Theorem (S.-Skeide, see also S.-Solel)

Every subproduct system over \mathcal{B} is the subproduct system of \mathcal{B} -correspondences associated with some normal CP-semigroup T acting on some $\mathcal{B}^{a}(E)$, where E is a \mathcal{B} -correspondence.

Let *E* be a full W*-correspondence over \mathcal{B} , and $\mathcal{B}^{a}(E)$ the **adjointable** operators on *E*. *E* is a **Morita W* equivalence** from $\mathcal{B}^{a}(E)$ to \mathcal{B} :

$$\mathcal{B}=E^*\overline{\odot}{}^sE\quad,\quad \mathcal{B}^a(E)=E\overline{\odot}{}^sE^*.$$

For $T = (T_s)_{s \in \mathbb{S}}$ a CP-s.g. on $\mathcal{B}^a(E)$, and $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ the GNS SPS consider the **Morita equivalent** subproduct system $\mathcal{F}^{\otimes} = (\mathcal{F}_s)_{s \in \mathbb{S}}$ given by

$$\mathcal{F}_{s} := E^* \overline{\odot}^{s} \mathcal{E}_{s} \overline{\odot}^{s} E.$$

 \mathcal{F}^{\otimes} the subproduct system of \mathcal{B} -correspondences associated with \mathcal{T} .

Theorem (S.-Skeide, see also S.-Solel)

Every subproduct system over \mathcal{B} is the subproduct system of \mathcal{B} -correspondences associated with some normal CP-semigroup T acting on some $\mathcal{B}^{a}(E)$, where E is a \mathcal{B} -correspondence. In particular, every SPS is Morita equivalent to the GNS of some CP-semigroup.

Let *E* be a full W*-correspondence over \mathcal{B} , and $\mathcal{B}^{a}(E)$ the **adjointable** operators on *E*. *E* is a **Morita W* equivalence** from $\mathcal{B}^{a}(E)$ to \mathcal{B} :

$$\mathcal{B}=E^*\overline{\odot}{}^sE\quad,\quad \mathcal{B}^a(E)=E\overline{\odot}{}^sE^*.$$

For $T = (T_s)_{s \in \mathbb{S}}$ a CP-s.g. on $\mathcal{B}^a(E)$, and $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ the GNS SPS consider the **Morita equivalent** subproduct system $\mathcal{F}^{\otimes} = (\mathcal{F}_s)_{s \in \mathbb{S}}$ given by

$$\mathcal{F}_{s} := E^* \overline{\odot}^{s} \mathcal{E}_{s} \overline{\odot}^{s} E.$$

 \mathcal{F}^{\otimes} the subproduct system of \mathcal{B} -correspondences associated with \mathcal{T} .

Theorem (S.-Skeide, see also S.-Solel)

Every subproduct system over \mathcal{B} is the subproduct system of \mathcal{B} -correspondences associated with some normal CP-semigroup T acting on some $\mathcal{B}^{a}(E)$, where E is a \mathcal{B} -correspondence. In particular, every SPS is Morita equivalent to the GNS of some CP-semigroup.

Morita equivalence behaves nicely w.r.t. inclusions into product systems.

Thank you!